Abstract

Background and aimsThe potential benefits of high-density lipoproteins (HDL) against atherosclerosis are attributed to its major protein component, apolipoprotein A-I (apoA-I). Most of the apoA-I in the vascular wall appears to be in its lipid-poor form. The latter, however, is subjected to degradation by proteases localized in atherosclerotic plaques, which, in turn, has been shown to negatively impact its atheroprotective functions. Here, we report the development and in vivo use of a bioactivatable near-infrared full-length apoA-I-Cy5.5 fluorescent probe for the assessment of apoA-I-degrading proteolytic activities. MethodsFluorescence quenching was obtained by saturation of Cy5.5 fluorophore molecules on apoA-I protein. ApoA-I cleavage led to near-infrared fluorescence enhancement. In vitro proteolysis of the apoA-I probe by a variety of proteases including serine, cysteine, and metalloproteases resulted in an up to 11-fold increase in fluorescence (n = 5, p ≤ 0.05). ResultsWe detected activation of the probe in atherosclerotic mice aorta sections using in situ zymography and showed that broad-spectrum protease inhibitors protected the probe from degradation, resulting in decreased fluorescence (−54%, n = 6 per group, p ≤ 0.0001). In vivo, the injected probe showed stronger fluorescence emission in the aorta of human apoB transgenic Ldlr−/− atherosclerotic mice (ATX) as compared to wild-type mice. In vivo observations were confirmed by ex vivo aorta imaging quantification where a 10-fold increase in fluorescent signal in ATX mice (p ≤ 0.05 vs. control mice) was observed. ConclusionsThe use of this probe in different applications may help to assess new molecular mechanisms of atherosclerosis and may improve current HDL-based therapies by enhancing apoA-I functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.