Abstract

Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody’s structure, demands for a constant optimization of their development. In this regard, modulation of an antibody’s affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.