Abstract

The neural network model, MISHKA-NN is developed to mitigate the computational burden associated with the linear ideal magnetohydrodynamic (MHD) stability analysis of the pedestal based on the peeling–ballooning (P–B) model. By utilizing both 1D plasma profiles (current density, pressure gradient, and safety factor) and 0D parameters (plasma geometry, total current, and toroidal mode number), the model predicts linear growth rate of edge-localized ideal MHD instability in a given equilibrium state. By enabling the prediction of each instability within a second, the model reduces the time required for plotting a pedestal P–B stability diagram ( j−α diagram) from approximately 100 CPU hours to a few CPU minutes. Notably, even with the utilization of parametric pressure and current profiles and plasma boundary shapes for the training dataset, the model shows a satisfactory level of performance in benchmarking the j−α diagram for the reconstructed equilibrium from a KSTAR tokamak experiment. We anticipate the model to serve as a versatile alternative to 2D linear MHD stability codes, alleviating numerical costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.