Abstract

The aims of this study were to develop a thin needle driver with multiple degrees of freedom and to evaluate its efficacy in multidirectional suturing compared with a conventional needle driver. The tip (15 mm) of the novel user-friendly needle driver (3.5 mm in diameter) has three degrees of freedom for grasping, rotation, and deflection. Six pediatric surgeons performed two kinds of suturing tasks in a dry box: three stitches in continuous suturing that were perpendicular or parallel to the insertion direction of the instrument, first using the novel instrument, then using a conventional instrument, and finally using the novel instrument again. The accuracy of insertion and exit compared with the target points and the procedure time were measured. In the conventional and novel procedures the mean gaps from the insertion point to the target in perpendicular suturing were 0.8 mm and 0.7 mm, respectively; in parallel suturing they were 0.8 mm and 0.6 mm, respectively. The mean gaps from the exit point to the target in perpendicular suturing were 0.6 mm and 0.6 mm for conventional and novel procedures, respectively; in parallel suturing they were 0.6 mm and 0.8 mm, respectively. The procedure time for perpendicular suturing was 33 seconds and 64 seconds for conventional and novel procedures, respectively (P=.02); for parallel suturing it was 114 seconds and 91 seconds, respectively. Our novel needle driver maintained accuracy of suturing; parallel suturing with the novel driver may be easier than with the conventional one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call