Abstract

A Nb 3Sn composite conductor with ≈ 10 000 submicron diameter filaments has been manufactured using the external diffusion process. A.c. losses were greatly reduced by the use of a fine filament size (0.53 μm, design value), a tight twist pitch (0.87 mm) and a small wire diameter (0.153 mm) with a bronze matrix. In an a.c. field with a frequency of 50 Hz and amplitude of 2.0 T, the hysteresis loss and the coupling current loss were observed to be 465 kW m −3 and 26 kW m −3, respectively. A triplex conductor was constructed by cabling three strands at a twisting pitch of 3 mm, and a small coil was wound from this cable (i.d. 11 mm, o.d. 33 mm, axial length 19 mm). With d.c. the coil generated a field of 1.3 T at the critical current, l c of 37.4 A. When the coil was operated at 50 Hz, with an exciting current of I c, the observed loss averaged over the windings was 240 kW m −3. The quenching current for 50 Hz operation was 53 A at a maximum field of 1.8 T. This was considerably higher than the critical values under d.c. conditions. Preliminary studies have shown that, if this conductor is used in superconducting armature windings of rotating machines, economical benefits are obtained compared with the use of conventional armatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.