Abstract

PurposeThe purpose of this paper is to propose a nanodiamond-particle-loaded food-grade lubricating oil, a nanolubricant, that can be used over a broad range of loads in factories (low load applications like conveyor systems and high load applications like heavy machinery).Design/methodology/approachTribological performance of the nanolubricant was studied at both load levels. A typical factory-sized conveyor belt used for beverage packaging (aluminium cans, glass and PET bottles) was employed for the low load range. Coefficients of friction and wear scars were measured and the lubricating performance was quantified. A four-ball tester was used to characterise the performance of the nanolubricant as per ASTM D2783/D4172. A comparison between the nanolubricant and baseline oils was carried out.FindingsResults show an overall decrease in the coefficients of friction and wear scars for all packages at low pressures when the nanolubricant is used. They also show a better friction-reduction performance in the high load regimes. The results indicate that the nanolubricant is versatile in both ranges of loading.Practical implicationsThe current protocols for lubrication in the food and drink factories involve the use of water-based detergents for the conveyor lines and industry-grade oils for the machinery. The use of a single and versatile lubricant for both ranges of loads may have a positive impact on the sustainability and environmental performance of the sector.Originality/valueBeverage processing and packing factories need their mechanised conveyor systems suitably lubricated to avoid excessive friction between the containers and the load-bearing surface of the conveyors (e.g. belts or chains). Other areas of the conveying systems, such as motors, gears, rollers and bearings, also need suitable lubrication to prevent failure and lengthen their operating life. There is a myriad of lubricants and lubricating solutions for each of these areas independently, but there is no commercial lubricating fluid that could be used on both successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.