Abstract

Harmful algal blooms (HABs) have adverse effects on the marine ecological environment, public health, and marine economy. Thus, methods for the accurate and rapid identification of harmful algal species are urgently needed for the effective monitoring of the occurrence of HABS. A method for the parallel detection of harmful algal species must be established because various HAB-forming algal species coexist in the marine environment. This work developed a multiplex PCR (mPCR) method that can simultaneously detect six common HAB-forming microalgal species distributed along the coast of China: Karlodinium veneficum (Kv), Chattonella marina (Cm), Skeletonema spp., Scrippsiella trochoidea (St), Karenia mikimotoi (Km), and Prorocentrum donghaiense (Pd). Specific mPCR primers were designed from the internal transcribed spacer rDNA or large subunit rDNA gene of the target algal species. The mPCR conditions were optimized. Each mPCR primer was subjected to a cross-reactivity test with other microalgae to confirm the specificity of the developed mPCR system. The results of the system stability test indicated that the background concentration of DNA tested did not affect the performance of the established mPCR system. The results of the sensitivity test showed that the detection limit of the proposed mPCR system for Kv, Cm, Km, and Pd was 0.6 ng μL−1 and that for Skeletonema spp. and St was 0.06 ng μL−1. Additional mPCR analysis with spiked field samples revealed that the detection limit of the mPCR system for Km, Pd, and Kv was 60 cells, whereas that for Cm, Skeletonema spp., and St was 6 cells. The convenience and accuracy of the established mPCR assay were further validated through tests with field samples. The proposed mPCR assay is characterized by parallel analysis, strong specificity, and stability and can be used to supplement morphology-based detection methods for algal species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.