Abstract

The rodents Pasteurellaceae have to be excluded from the specified pathogen free experimental animal facilities. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals just a few molecular based methods are available for their detection and identification. The aim of the present investigation was to develop a multiplex PCR assay allowing detection of all rodent Pasteurellaceae and identification of [Pasteurella] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl and [Actinobacillus] muris, as the most prevalent members of the group. For this, a Pasteurellaceae common forward primer located on the 16S rRNA gene was used in conjunction with four different reverse primers specific for [P.] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl, [A.] muris and a common reverse primer for all rodent Pasteurellaceae, all targeting the 16S–23S rRNA internal transcribed spacer sequences. The performance characteristics of the assay were tested against 125 Pasteurellaceae isolates belonging to eleven different species and including 34 strains of [P.] pneumotropica biotype Jawetz, 44 strains of [P.] pneumotropica biotype Heyl and 37 strains of [A.] muris. Additionally, eight other mouse associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA gene sequencing. This multiplex PCR represents the first molecular tool able to detect and differentiate in a single assay among the Pasteurellaceae found in laboratory mouse and may become a reliable alternative to the present diagnostic methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.