Abstract

In this work the development of a multiphase photon Monte Carlo (PMC) method with a focus on resolving radiative heat transfer in combustion simulations is presented. The multiphase PMC solver can account for description of participating media in both Lagrangian and Eulerian frameworks. The solver is validated against exact solutions in several one-dimensional configurations. The developed solver is then applied to Diesel spray combustions, where liquid spray droplets are assumed to be cold, nonemitting, large, and isotropically scattering. Several formulations for radiative properties of the Diesel spray are first explored. The PMC solver has then been coupled with the multiphase spray combustion solver in OpenFOAM and the coupled solver is used for simulations of high pressure Diesel spray combustion. It was found that in typical Diesel spray combustion applications, such as in an internal combustion engine, impact of radiation on the evolution of the liquid spray was insignificant. Although the impact of radiation on the spray was minimal, nongray spectral properties and the assumption of semi-transparency for Diesel spray were found to impact the radiative transfer significantly, while impact of scattering was marginal. Spray radiation was also found not to have much effect on global combustion characteristics in high-pressure engine-relevant configurations. However, a small but noticeable effect on minor species distribution relevant to pollutant formation was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.