Abstract

Abstract In a hypothetical severe accident in a light water reactor (LWR) nuclear power plant, there is a possibility that molten core released from the reactor vessel gets in contact with water in the containment vessel. In this so-called fuel-coolant interactions (FCIs) process, the melt jet will breakup into fragments, which is one of the important factors for a steam explosion, as a potential threat to the integrity of the containment vessel. The particle method could directly and easily capture the large deformed interfaces by particle motions, benefiting from its Lagrangian description and meshless framework. In order to investigate the melt-jet breakup with solidification processes, a multiphase particle method with arbitrary high order scheme is presented in this study. In addition, an interfacial particle shifting scheme is developed to suppress the unnatural particle penetration between different phases. The convergence rate with different order is firstly confirmed by a verification test in terms of both explicit and implicit calculations. Then, a transient heat conduction between two materials is carried out and quite good results are obtained. After that, a rising bubble benchmark is performed to show the feasibility of modelling for deformation and collapse. Improvements of clear interface are indicated compared with previous reported results. Two important multiphase instabilities, namely the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability, are studied since they play important roles during the melt-jet breakup. The results achieved so far indicate that the developed particle method is capable to analyze the melt-jet breakup with heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.