Abstract

PurposeThis study proposed a three-dimensional (3D) multi-modal learning-based model for the automated prediction and classification of lymph node metastasis in patients with non-small cell lung cancer (NSCLC) using computed tomography (CT) images and clinical information. MethodsWe utilized clinical information and CT image data from 4239 patients with NSCLC across multiple institutions. Four deep learning algorithm-based multi-modal models were constructed and evaluated for lymph node classification. To further enhance classification performance, a soft-voting ensemble technique was applied to integrate the outcomes of multiple multi-modal models. ResultsA comparison of the classification performance revealed that the multi-modal model, which integrated CT images and clinical information, outperformed the single-modal models. Among the four multi-modal models, the Xception model demonstrated the highest classification performance, with an area under the curve (AUC) of 0.756 for the internal test dataset and 0.736 for the external validation dataset. The ensemble model (SEResNet50_DenseNet121_Xception) exhibited even better performance, with an AUC of 0.762 for the internal test dataset and 0.751 for the external validation dataset, surpassing the multi-modal model's performance. ConclusionsIntegrating CT images and clinical information improved the performance of the lymph node metastasis prediction models in patients with NSCLC. The proposed 3D multi-modal lymph node prediction model can serve as an auxiliary tool for evaluating lymph node metastasis in patients with non-pretreated NSCLC, aiding in patient screening and treatment planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.