Abstract

Tools for assessing and communicating salt marsh condition are essential to guide decisions aimed at maintaining or restoring ecosystem integrity and services. Multimetric indices (MMIs) are increasingly used to provide integrated assessments of ecosystem condition. We employed a theory-based approach that considers the multivariate relationship of metrics with human disturbance to construct a salt marsh MMI for five National Parks in the northeastern USA. We quantified the degree of human disturbance for each marsh using the first principal component score from a principal components analysis of physical, chemical, and land use stressors. We then applied a metric selection algorithm to different combinations of about 45 vegetation and nekton metrics (e.g., species abundance, species richness, and ecological and functional classifications) derived from multi-year monitoring data. While MMIs derived from nekton or vegetation metrics alone were strongly correlated with human disturbance (r values from −0.80 to −0.93), an MMI derived from both vegetation and nekton metrics yielded an exceptionally strong correlation with disturbance (r = −0.96). Individual MMIs included from one to five metrics. The metric-assembly algorithm yielded parsimonious MMIs that exhibit the greatest possible correlations with disturbance in a way that is objective, efficient, and reproducible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.