Abstract

A dynamic multimedia model (POPsLTEA) for an East Asia region was developed and evaluated to quantitatively assess how climate change (CC) alters the environmental fate and transport dynamics of 16 polycyclic aromatic hydrocarbons (PAHs) in air, water, soil, and sediment. To cover the entire model domain (25°N–50°N and 98°E–148°E) where China, Japan, and South and North Koreas are of primary concern, a total of 5000 main cells of 50km×50km size were used while 1008 cells of a finer spatial resolution (12.5km×12.5km) was nested for South Korea (33°N–38°N and 126°E–132°E). Most of the predicted concentrations agreed with the observed values within one order of magnitude with a tendency of overestimation for air and sediment. Prediction of the atmospheric concentration was statistically significant in both coincidence and association, suggesting the model's potential to successfully predict the fate and transport of the PAHs as influenced by CC. An example study of benzo(a)pyrene demonstrates that direction and strength of the CC influence on the pollution levels vary with the location and environmental media. As compared to the five year period of 2011 to 2015, the changes across the model domain in the annual geometric mean concentration over the years of 2021 through 2100 were predicted to range from 88% to 304%, from 84% to 109%, from 32% to 362%, and from 49% to 303%, in air, soil, surface water, and sea water, respectively, under the scenario of RCP8.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.