Abstract

The mining industry annually consumes trillions of British thermal units of energy, a large part of which is saveable. Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the major users of this energy source. Gross vehicle weight, truck velocity and total resistance have been recognised as the key parameters affecting the fuel consumption. In this paper, an artificial neural network model was developed to predict the fuel consumption of haul trucks in surface mines based on the gross vehicle weight, truck velocity and total resistance. The network was trained and tested using real data collected from a surface mining operation. The results indicate that the artificial neural network modelling can accurately predict haul truck fuel consumption based on the values of the haulage parameters considered in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.