Abstract

Robust design is an efficient process improvement methodology that combines experimentation with optimization to create systems that are tolerant to uncontrollable variation. Most traditional robust design models, however, consider only a single quality characteristic, yet customers judge products simultaneously on a variety of scales. Additionally, it is often the case that these quality characteristics are not of the same type. To addresses these issues, a new robust design optimization model is proposed to solve design problems involving multiple responses of several different types. In this new approach, noise factors are incorporated into the robust design model using a combined array design, and the results of the experiment are optimized using a new approach that is formulated as a nonlinear goal programming problem. The results obtained from the proposed methodology are compared with those of other robust design methods in order to examine the trade-offs between meeting the objectives associated with different optimization approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call