Abstract

We report a highly sensitive and selective CNT-switch liquid biopsy platform that detects and quantifies protein biomarker expressions from circulating tumor cells in blood for early detection of metastatic breast cancer and its relapse. This platform first isolates and enriches more than 99% of tumor cells with an off-chip micro-size membrane filtration technique and then conducts on-chip detection of the membrane and internal protein biomarkers of the tumor cells with high sensitivity and selectivity. High sensitivity is achieved with complete association of the antibody-antigen-antibody (Ab-Ag-Ab) complex by precisely and rapidly assembling carbon nanotubes (CNTs) across two parallel electrodes via sequential DC electrophoresis and dielectrophoresis (DEP) deposition. Each bridged CNT acts as a switch that connects the electrodes and closes the circuit to generate an electrical signal. The high selectivity is achieved with a critical hydrodynamic shear rate that irreversibly removes non-target linkers of the aligned CNTs. At present, we are able to detect the protein biomarkers from 5 spiked breast cancer tumor cells of different types within 7.5ml of human blood samples. This demonstrates the potential of this platform as an inexpensive and noninvasive alternative to MRI scans and tissue biopsies currently used to detect early metastatic breast cancer and its relapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call