Abstract

Accurately measuring fog droplet spectra is essential for understanding fog's formation, dissipation, and composition, which makes a challenge to the performance of droplet sampling and measurement systems. Standard particles such as glass beads are widely used to characterize their performance. However, the disparities between glass beads and fog droplets, including refractivity, size distribution, and composition, may lead to calibration errors. In this context, we developed a three-stage fog droplet screening system based on the virtual impact principle. We determined the Stokes number and the diameter of the acceleration nozzle through theoretical analysis. Subsequently, we utilized the computational fluid dynamics software Fluent to explore the influence of key system parameters on screening efficiency, including the diameter of the collection nozzle (D1) and the distance between the acceleration nozzle and the collection nozzle (S). The simulation results indicated that the screening efficiency improved with S. The best performance was achieved when D1 = 1.35 D0 and S = 1.90 D0 (where D0 represents the diameter of the acceleration nozzle), resulting in an average screening efficiency of 75.4%. Finally, we conducted experiments to validate the effectiveness of the screening system. The screening efficiency of each outlet was estimated at 42.2%, 66.1%, 84.0%, and 95.3%, with differences of 2.0%, 3.3%, 4.1%, and 4.7% compared to the simulations. The average screening efficiency was 71.9%, with a deviation of 3.5% from the simulation. These findings demonstrated that the screening system could provide an alternative technical apparatus for characterizing droplet sampling and measurement systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call