Abstract

An anthropomorphic transhumeral robotic arm prosthesis is proposed in this study. It is capable of generating fifteen degrees-of-freedom, seven active and eight passive. In order to realize wrist motions, a parallel manipulator-based mechanism is proposed. It simulates the human anatomical structure and generates motions in two axes. The hand-of-arm prosthesis consists of under-actuated fingers with intrinsic actuation. The finger mechanism is capable of generating three degrees of freedom, and it exhibits the capability of adjusting the joint angles passively according to the geometry of the grasping object. Additionally, a parameter to evaluate finger mechanisms is introduced, and it measures the adoptability of a finger mechanism. In order to verify the mechanism's efficacy in terms of motion generation, motion simulation and kinematic analysis were carried out. Results demonstrated that the mechanisms are capable of generating the required motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.