Abstract

Removal of low-concentration (ng/L ~ μg/L) antibiotics from water calls for the development of cost-effective treatment technologies. In this study, a novel moving-bed electrochemical membrane bioreactor (MEMBR) was developed for removing sulfamethoxazole (SMX). Results showed that the introduction of external electric field and carbon felt particles could efficiently eliminate SMX (removal efficiency of 88.9%). In contrast, the moving-bed membrane bioreactor (MMBR) took a long time to acclimate microorganism, reaching a removal efficiency of 43.9%. Transmembrane pressure increase rate was much lower in MEMBR (1.06 kPa/d) compared to MMBR (1.72 kPa/d). The presence of carriers increased the generation of reactive oxygen species, contributing to SMX removal. Microbial community analysis revealed that the introduction of electric field could increase microbial community richness/diversity and enrich the phyla of Actinobacteria and Gemmatimonadete, potentially capable of mineralizing SMX. These results clearly demonstrated the potential of this novel MEMBR to be used for enhanced micropollutants removal from water/wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call