Abstract

Background: Allergic asthma is a chronic inflammatory airway disease caused by exposure to airborne allergens. In order to develop novel therapies for allergic asthma, models that are relevant to human disease are needed. Methods: Female BALB/c mice were presensitised subcutaneously with alum-adsorbed recombinant cat allergen Fel d 1, followed by intranasal challenges with cat dander extract spiked with recombinant Fel d 1 for 7 weeks. For reference, mice were presensitised and challenged with ovalbumin following the same protocol. Airway hyperresponsiveness, serum antibodies, airway inflammation and cell infiltration, and cytokines in lung tissue and bronchoalveolar lavage were measured. Results: Mice presensitised with recombinant Fel d 1 and challenged with cat dander extract or presensitised and challenged with ovalbumin showed airway hyperresponsiveness in response to metacholine. Mice of the cat allergen model showed influx of neutrophils, eosinophils and lymphocytes in bronchoalveolar lavage, combined with increased levels of IL-17a and increased IL-4 mRNA expression in lung tissue. In contrast, mice sensitised and challenged with ovalbumin showed a predominant influx of eosinophils in bronchoalveolar lavage and had an increased expression of IL-5 in lung tissue. Both protocols induced features of lung tissue remodelling and allergen-specific antibody responses. Conclusions: The presented mouse model for cat allergen-induced asthma exhibits hallmarks of chronic allergic asthma, like airway hyperresponsiveness, a mixed neutrophilic/eosinophilic infiltration in bronchoalveolar lavage, expression of IL-17a and signs of remodelling in lung tissue. The model will provide a relevant platform for the development of novel treatment strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.