Abstract

Malathion (MAL) is an organophosphorus (OP) insecticide. It is a cholinesterase inhibitor, which can pose serious health and environmental problems. In this study, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrodes (Au-SPE) for MAL detection in olive oils and fruits, was devised. The MIP sensor was prepared using acrylamide as the functional monomer and MAL as the template. Subsequently, the morphology of the electrode surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical characterization of the developed MIP sensor was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The operational repeatability and stability of the sensor were studied. It was found to have a dynamic concentration range of (0.1 pg mL−1-1000 pg mL−1) and a low limit of detection (LOD) of 0.06 pg mL−1. Furthermore, the sensor was employed to determine MAL content in olive oil with a recovery rate of 87.9% and a relative standard deviation of 8%. It was successfully applied for MAL determination in real samples and promise to open new opportunities for the detection of OP pesticides residues in various food products, as well as in environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call