Abstract

[Image: see text] In this work we investigate the feasibility of modifying porcine-derived BAM to include HA with a view to developing a model, artificial extracellular matrix for the study of bladder cell-matrix interactions. HA-DPTH was incorporated into BAM disks and then cross-linked oxidatively to a disulfide containing hydrogel. Disks were seeded with bladder smooth muscle cells (BSMC) and UEC under three culture configurations and incubated for 3, 7, and 14 d. At each time point, matrix contraction was measured, and media supernatants assayed for cell-secreted gelatinase activity. To evaluate cell adherence and organization, triple immunofluorescent labeling of cell nuclei, actin cytoskeleton, and focal contacts was performed. HA-modified BAM exhibited a significant increase in matrix contraction and induced a higher level of cell-secreted gelatinase activity compared to unmodified BAM. Immunofluorescent labeling demonstrated that BSMCs remained adherent to both scaffold types over time. The distribution and organization of the cytoskeleton and focal contacts did not appear to be altered by the presence of HA. Interestingly, cellular infiltration into modified BAM was evident by 7 d and continued beyond 14 d, while BSMCs seeded onto unmodified BAM remained localized to the surface out to 14 d, with minimal infiltration evident only at day 28. These differences in cell infiltration support the gelatinase activity results. Increases in cell migration and matrix proteolysis in the presence of HA may be contributing factors toward BAM remodeling leading to increased matrix contraction with time. The model ECM developed in this work will be utilized for future studies aimed at elucidating the mechanisms controlling key remodeling events associated with bladder repair. Matrix contraction of cell-seeded BAM scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.