Abstract

Mathematical simulation of temperature distribution on double-sided solar cells has been carried out. Differences in the configuration of photoelectric converters prove to solely amount to the fact that a double-sided solar cell has a more efficient heat sink at the rear side. Furthermore double-sided solar cells exhibit higher power conversion performance. Calculations confirm the correctness of giving preference to double-sided solar cells which is of great importance for the photoelectric converter design developed by us. Analysis of market-available photovoltaic technologies of solar energy to electric power conversion has led to the development of a photovoltaic converter on the basis of double-sided silicon heterojunction solar cells. The configuration developed is a moving platform having a photovoltaic cell array mounted on it and a light flux collector. A double-axis tracking system has been developed for the general case of planar attachment of solar cell modules. A 350 mm stroke drive provides for movement in the north-south direction and a 450 mm stroke drive, in the east-west direction. The task has been outlined to find the required arm for providing symmetrical positioning at the maximum rotation angle about the axis. As a result, technical solutions have been developed for the north-south and the east-west directions. Furthermore a schematic wiring diagram has been designed to implement the preset solar tracking system algorithm. The system is also fitted with a GPS/GLONASS module for system precision positioning and time synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.