Abstract
Caladium is a popular ornamental plant and has business potential. However, difficulties in recognizing the type of Caladium often occur because of the similarities in shape, pattern, and color of the leaves between the different kinds of Caladium. To overcome this problem, research will use machine learning with the Convolutional Neural Network (CNN) algorithm to build a mobile application that can accurately classify four types of Caladiums. The data set used is 1200 data with four classes; each class has 300 data. The best model is found with the parameter epoch 100, learning rate 0.001, and batch size 64. The model is then implemented in a mobile application with two menus, "Take a photo" and "Choose an image," which will display the classification output and confidence values of the four types of Caladiums. Testing with 30 test data per class achieves 0.975 accuracy on both menus. On the “Take a photo” menu, precision is 0.974, recall is 0.9725, and f1-score is 0.965. Meanwhile, on the “Choose an image” menu a precision and recall value is 0.975, and f1-score value of 0.97.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.