Abstract
A medium with minimal requirements for the growth of Lactobacillus plantarum WCFS was developed. The composition of the minimal medium was compared to a genome-scale metabolic model of L. plantarum. By repetitive single omission experiments, two minimal media were developed: PMM5 (true minimal medium) and PMM7 [a pseudominimal medium, supporting proper biomass formation of 350 mg l(-1) dry weight (DW)]. The specific growth rate of L. plantarum on PMM7 was found to be 50% and 63% lower when compared to growth on established growth media (chemically defined medium and MRS, respectively). Using a genome-scale metabolic model of L. plantarum, it was predicted that PMM5 and PMM7 would not support the growth of L. plantarum. This is because the biosynthesis of para-aminobenzoic acid (pABA) was predicted to be essential for growth. The discrepancy in simulated growth and experimental growth on PMM7 was further investigated for pABA; a molecule which plays an important role in folate production. The growth performance and folate production were determined on PMM7 in the presence and absence of pABA. It was found that a 12,000-fold reduction in folate pools exerted no influence on formation of biomass or growth rate of L. plantarum cultures when grown in the absence of pABA. Largely reduced folate production pools do not have an effect on the growth of L. plantarum, showing that L. plantarum makes folate in a large excess. These experiments illustrate the importance of combining genome-scale metabolic models with growth experiments on minimal media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.