Abstract

To realize early fire identification in cotton harvesting operations, a mid-infrared carbon monoxide (CO) sensor system was developed. To match the broadband light source with a 15° divergence angle, a multipass gas cell (MPGC) with an effective path length of 180 cm was designed to improve sensor sensitivity, leading to a limit of detection (LoD) of 0.83 parts-per-million by volume (ppmv). A damping module with springs at the bottom and front/back sides was fabricated, which can effectively reduce the vibration intensity by >80%. The sensor system can operate normally from -40 °C to 85 °C by stabilizing the temperature of the optical module through heating or cooling as well as using automotive electronic components. An adaptive early fire identification algorithm based on a dual-parameter threshold alarming method was proposed to avoid false and missing alarms. Field deployments on a harvester verified the good practicability of the sensor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.