Abstract
The speed of insulin absorption after subcutaneous delivery is highly variable. Incorrect assumptions about insulin pharmacokinetics compromise effective glycemic regulation. Our ultimate goal is to develop a system to monitor insulin levels in vivo continuously, allowing pharmacokinetic parameters to be calculated in real time. We hypothesize that a bead-based detection system can be run on a flow-through microfluidic platform to measure insulin in subcutaneous fluid sampled via microdialysis. As a first step in development, we focused on microsphere-based measurement of insulin. Polystyrene microspheres coated with an anti-insulin monoclonal antibody were exposed to insulin-containing solutions, and after addition of a fluorescently labeled anti-insulin monoclonal antibody with a distinct epitope, bead-associated fluorescence was detected by fluorescence microscopy in 96-well plates or in a flow-through, microfluidic platform. The bead detection system in plates had a linear range in buffer for regular human insulin (RHI), insulin lispro, and insulin aspart of 15-1115 µIU/ml, 14-976 µIU/ml, and 25-836 µIU/ml, respectively. Measurement on plasma samples demonstrated proportionality between basal and peak insulin levels similar to the laboratory reference method. Preliminary results in a polydimethylsiloxane-based, flow-through, microfluidic platform showed a strong signal at peak insulin levels. We have developed a microsphere-based system to rapidly measure levels of insulin and insulin analogs. We have further demonstrated proof of concept that this bead detection system can be implemented in a lab-on-a-chip format, which will be further developed and combined with microdialysis for real-time monitoring of insulin in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.