Abstract

BackgroundFactor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation. There is a need of a simple, fast, and inexpensive microplate-based coagulation assay to measure the functional activity of FV in human plasma. The objective of this study was to develop a microplate-based assay that measures FV coagulation activity during clot formation in human plasma, which is currently not available.MethodsThe FV assay requires a kinetic microplate reader to measure the change in absorbance at 405nm during fibrin formation in human plasma. The FV assay accurately measures the time, initial rate, and extent of fibrin clot formation in human plasma.ResultsThe FV microplate assay is simple, fast, economical, sensitive to approx 24-80pM, and multiple samples may be analyzed simultaneously. All the required materials are commercially available. Standard curves of time or initial rate of fibrin clot formation vs FV activity in the 1-stage assay (Without activation by thrombin) may be used to measure FV activity in samples of human plasma. The assay was used to demonstrate that in nine patients with disseminated intravascular coagulation (DIC), the FV 1-stage, 2-stage (With activation by thrombin), and total (2-stage activity - 1-stage activity) activities were decreased, on average, by approximately 54%, 44%, and 42%, respectively, from prolonged clot times when compared to normal pooled human reference plasma (NHP). The results indicate that the FV in the DIC patient plasmas supported both a delayed and slower rate of fibrin clot formation compared with NHP; however, the extent of fibrin clot formation in the DIC patients remained largely unchanged from that observed with NHP.ConclusionsThe FV microplate assay may be easily adapted to measure the activity of any coagulation factor using the appropriate factor-deficient plasma and clot initiating reagent. The microplate assay will find use in both research and clinical laboratories to provide measurement of the functional coagulation activity of FV in human plasma.

Highlights

  • Factor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation

  • Given that the FV concentration in normal pooled human reference plasma (NHP) is approx 12-40nM [11], the results indicate that the assay is sensitive to approximately 24-80pM FV in NHP

  • Our results indicate that the normal range of FV activity in the FV 1-stage activity assay in 15 healthy controls assayed with the FV microplate assay was approximately (Mean ± Standard deviation; Range): 0.96 ± 0.14 U/ml; 0.68-1.11 U/ml

Read more

Summary

Introduction

Factor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation. There is a need of a simple, fast, and inexpensive microplate-based coagulation assay to measure the functional activity of FV in human plasma. The objective of this study was to develop a microplate-based assay that measures FV coagulation activity during clot formation in human plasma, which is currently not available. FVa is a major regulatory component of coagulation where it accelerates thrombin generation and consequent fibrin clot formation as part of the prothrombinase enzyme complex [13]. In the presence of thrombomodulin, thrombin activates protein C to activated C (APC) which inactivates FV and FVa and downregulates coagulation as part of the normal anticoagulation response to injury [14]. The FV Leiden mutation is currently the most common genetic risk factor for venous thrombosis in humans [16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call