Abstract

The ecdysone receptor (EcR) has been used to develop gene switches for conditional regulation of transgene expression in plants and humans. All EcR-based gene switches developed to date for use in plants are monopartate and require micromolar concentrations of ligand for activation of the transgene; this has limited the use of these gene switches. We have developed a Choristoneura fumiferana ecdysone receptor (CfEcR)-based two-hybrid gene switch that works through the formation of a functional heterodimer between EcR and the retinoid X receptor (RXR) upon application of the chemical ligand methoxyfenozide. Methoxyfenozide is already registered for field use with an excellent safety profile, and it has potential as a gene switch ligand for applications in the field. The receptor constructs were prepared by fusing DEF domains (hinge region plus ligand-binding domain) of CfEcR to the GAL4 DNA-binding domain and EF domains (ligand-binding domain) of ultraspiracle from Choristoneura fumiferana (CfUSP) or RXR from Locusta migratoria (LmRXR), Mus musculus (MmRXR) or Homo sapiens (HsRXR) to the VP16 activation domain. These receptor constructs were tested for their ability to induce expression of the luciferase gene placed under the control of 5x GAL4 response elements and -46 35S minimal promoter in tobacco, corn and soybean protoplasts and in transgenic Arabidopsis and tobacco plants. By adopting the two-hybrid format, the sensitivity of the CfEcR gene switch has been improved from micromolar to nanomolar concentrations of methoxyfenozide. The sensitivity of the CfEcR + LmRXR two-hybrid switch was 25 to 625 times greater than the monopartate gene switch, depending on the plant species tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.