Abstract

The present study focuses on the development of a fast, non-invasive methodology, appropriate for the detection and characterization of biodeterioration present on the surface of archaeological/historical stone objects and monuments, by exploiting the characteristic fluorescence emission of biological deposits. Fluorescence spectra were collected by use of a portable LED (Light Emitting Diode)-Induced Fluorescence (LED-IF) instrument. Three limestone fragments and one mortar fragment, from different monuments in Greece, presenting various types of biodeterioration on their surface, have been investigated in the laboratory. First, fluorescence emission spectra were acquired with a benchtop laboratory spectrofluorometer in order to select the optimum excitation wavelengths for the fluorophores present in the biological crust. An evaluation of the portable LED-IF instrument was conducted by assessing the performance of its optical components and different LED excitation sources, while an investigation of several experimental parameters on the fluorescence signal was also performed. Furthermore, issues related to the efficiency of detection and identification of biological growth have been studied, such as the effect of sample surface wetting on the fluorescence signal. The results of the present study demonstrate that the LED-IF instrument can be used for a fast and reliable assessment of the presence of biodeterioration on monuments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.