Abstract

Changes in protein glycosylation owing to changes in environmental conditions are not well understood. To better understand these relationships, methods to quantify controlling factors are needed. Because enzymes are translated from genes, the ability to quantify gene expression levels for glycosylation-related enzymes would be advantageous. We developed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assays to monitor gene expression in Chinese hamster ovary (CHO) cells for five terminal glycosylation genes. The five enzymes were sialidase, a putative alpha2,3-sialyltransferase, beta1,4-galactosyltransferase, cytosine monophosphate-sialic acid transporter, and uracil diphosphate-galactosyl transporter. Four of these CHO cell genes were publicly available from GenBank; however, the alpha2,3-sialyltransferase gene for Cricetulus griseus (CHO cell species) was not available and, therefore, was sequenced as a part of this work. The qRT-PCR primers and probes (based on the TaqMan chemistry) were designed and validated for these five genes. The gene expression profiles were obtained for CHO cells producing the recombinant interleukin-4/13 cytokine trap molecule in batch reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call