Abstract
Molecular biology techniques based on the detection of genomic sequences by reverse transcription combined with polymerase chain reaction (PCR) have enabled the detection of different RNA viruses in serum or plasma samples. Since the dengue epidemic outbreak declared in Argentina in 2009, numerous patients' samples were analyzed for the acute phase of infection. One of the main methodological drawbacks is the lack of internal control to measure the effectiveness of the viral extraction and reverse transcription process. In this article, we propose to standardize a molecular method to detect beta actin (β-Act) and glucose 6 phosphate dehydrogenase (G6PDH) complementary DNAs (cDNAs) present in patient's plasma/serum, as a control process. RNA extraction, reverse transcription, and PCRs for human G6PDH, β-Act, and the dengue virus genome were performed. cDNA fragments for β-Act and G6PDH were amplified for all samples, regardless of the presence or absence of viral RNA. Amplification of β-Act and G6PDH cDNAs can be used as a control for the extraction and reverse transcription processes during dengue virus detection. This could also be a useful method for controlling the above steps when infections caused by other RNA viruses are studied, even if another methodology is employed, such as real-time PCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.