Abstract

Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes as a new source of functional hepatocytes in various medical applications. However, the hepatic functions of HLCs are still low and it takes a long time to differentiate them from human iPS cells. Furthermore, HLCs have very low proliferative capacity and are difficult to be passaged due to loss of hepatic functions after reseeding. To overcome these problems, we attempted to develop a technology to dissociate, cryopreserve, and reseed HLCs in this study. By adding epithelial-mesenchymal transition inhibitors and optimizing the cell dissociation time, we have developed a method for passaging HLCs without loss of their functions. After passage, HLCs showed a hepatocyte-like polygonal cell morphology and expressed major hepatocyte marker proteins such as albumin and cytochrome P450 3A4 (CYP3A4). In addition, the HLCs had low-density lipoprotein uptake and glycogen storage capacity. The HLCs also showed higher CYP3A4 activity and increased gene expression levels of major hepatocyte markers after passage compared to before passage. Finally, they maintained their functions even after their cryopreservation and re-culture. By applying this technology, it will be possible to provide ready-to-use availability of cryopreserved HLCs for drug discovery research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call