Abstract

Accurate analysis of all of the impurities present in a substance is critical for controlling the impurity profiles of drugs. Penicillins can easily yield a formidable array of degradation-related impurities (DRIs) with significantly different polarities and charge properties, which renders identifying each one a complicated matter. In this work, phenoxymethylpenicillin potassium (Pen V) was selected to find a way to quickly establish a robust analysis method for the impurity profiling of penicillin. Based on the analytical quality by design (AQbD) concept and the degradation mechanism of the drug, structures of all of the DRIs were first proposed. Then Pen V and its detected DRIs were separated and identified by liquid chromatography-tandem mass spectrometry method (LC–MS). Characteristic fragment ions and mass fragmentation process of Pen V and its detected DRIs were summarized. In addition, a quantitative structure-retention relationship (QSRR) model was constructed to predict the retention times of undetected impurities and to evaluate whether the chromatographic system can separate them. Finally, a stability-indicating high-performance liquid chromatography (HPLC) method was developed that can separate all of the DRIs of Pen V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.