Abstract
The peptidisc membrane mimetic enables global reconstitution of the bacterial membrane proteome into water-soluble detergent-free particles, termed peptidisc libraries. We present here a method that combines peptidisc libraries and chromosomal-level gene tagging technology with affinity purification and mass spectrometry (AP/MS) to stabilize and identify fragile membrane protein complexes that exist at native expression levels. This method circumvents common artifacts caused by bait protein overproduction and protein complex dissociation due to lengthy exposure to detergents during protein isolation. Using the Escherichia coli Sec system as a case study, we identify an expanded version of the translocon, termed the HMD complex, consisting of nine different integral membrane subunits. This complex is stable in peptidiscs but dissociates in detergents. Guided by this native-level proteomic information, we design and validate a procedure that enables purification of the HMD complex with minimal protein dissociation. These results highlight the utility of peptidiscs and AP/MS to discover and stabilize fragile membrane protein assemblies. Data are available via ProteomeXchange with identifier PXD032315.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.