Abstract

Fully defined physics-based building energy models can accurately represent building systems; however, generating models based on high-level parameters is time consuming and simulation time of complex models can be slow. This article discusses the development of a Metamodelling Framework to create metamodels from a building energy modelling dataset. The framework generates metamodels using either linear regression, random forests, or support vector regressions. A fifth-generation district heating and cooling system analysis use case was used to motivate the development of the framework. The use case required quick and accurate representations of annual building loads reported hourly. Typical annual building modelling approaches can result in a runtime of 10 min. The metamodels runtime was reduced to less than 10 s to load and run an annual simulation with user-defined covariates. The results of the metamodel performance and an abbreviated topology analysis based on the motivating use case will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.