Abstract

Metamaterial band-selective perfect absorbers are attractive for constructing surfaces with specified infrared emissivity. The difficulty in realizing such surfaces arises from the complexity in the manufacturing of multilayered (usually trilayered) and micro or nanostructures with high fidelity over large areas. Here, we develop and experimentally realize a simplified design for large-area metamaterials with specified infrared emissivity by utilizing the resonant excitations in a bilayered microstructure. The design is validated using computational models, and the origin of absorption in the metamaterial structure is identified. The design of the metamaterial allows for a simplification in the fabrication processes, and it is fabricated in sequential steps of fabrication of a master pattern by laser interference lithography, microstructuring on arbitrary surfaces by soft imprint lithography, and vacuum deposition of two layers of thin films. The methods are suitable for fabricating the metamaterial over flexible and extremely rough surfaces also and can be adopted easily for rapid prototyping and roll-to-roll manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.