Abstract
The usage of monoclonal antibodies (mAbs) and antibody fragments, as a matter associated with the biopharmaceutical industry, is increasingly growing. Harmonious with this concept, we designed an exclusive modeled single-chain variable fragment (scFv) against mesenchymal-epithelial transition (MET) oncoprotein. This scFv was newly developed from Onartuzumab sequence by gene cloning, and expression using bacterial host. Herein, we examined its preclinical efficacy for the reduction of tumor growth, invasiveness and angiogenesis in vitro and in vivo. Expressed anti-MET scFv demonstrated high binding capacity (48.8%) toward MET-overexpressing cancer cells. The IC50 value of anti-MET scFv against MET-positive human breast cancer cell line (MDA-MB-435) was 8.4µg/ml whereas this value was measured as 47.8µg/ml in MET-negative cell line BT-483. Similar concentrations could also effectively induce apoptosis in MDA-MB-435 cancer cells. Moreover, this antibody fragment could reduce migration and invasion in MDA-MB-435 cells. Grafted breast tumors in Balb/c mice showed significant tumor growth suppression as well as reduction of blood-supply in response to recombinant anti-MET treatment. Histopathology and immunohistochemical assessments revealed higher rate of response to therapy. In our study, we designed and synthetized a novel anti-MET scFv which could effectively suppress MET-overexpressing breast cancer tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.