Abstract
A membrane-array method was developed for the detection of human intestinal bacteria in fecal samples without using the expensive microarray-arrayer and laser-scanner. The 16S rDNA sequences of 20 predominant human intestinal bacterial species were used to design oligonucleotide probes. Three 40-mer oligonucleotides specific for each bacterial species (total 60 probes) were synthesized and applied to nitrocellulose membranes. Digoxigenin (DIG)-labeled 16S rDNAs were amplified by polymerase chain reaction (PCR) from human fecal samples or pure cultured bacteria using two universal primers, and were hybridized to the membrane-array. Hybridization signals were read by NBT/BCIP color development. The 20 intestinal bacterial species tested were Bacteroides thetaiotaomicron, B. vulgatus, B. fragilis, B. distasonis, Clostridium clostridiiforme, C. leptum, Fusobacterium prausnitzii, Peptostreptococcus productus,Ruminococcus obeum , R. bromii, R. callidus, R. albus, Bifidobacterium longum, B. adolescentis, B. infantis, Eubacterium biforme, E. aerofaciens, Lactobacillus acidophilus,Escherichia coli , and Enterococcus faecium. The two universal primers were able to amplify full size 16S rDNA from all of the 20 bacterial species tested. The hybridization results indicated that the membrane-array method is a reliable technique for the detection of predominant human intestinal bacteria in the fecal samples. The result was also confirmed by using specific PCR methods for these bacteria.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.