Abstract

BackgroundStreptococcus agalactiae or Group B Streptococcus (GBS) remains the leading cause of infections in newborns worldwilde. Prenatal GBS screening of pregnant women for vaginal-rectal colonization is recommended in many countries to manage appropriate intrapartum antimicrobial prophylaxis for those identified as carriers. In this study, a novel melting-curve based multiplex real-time PCR assay for the simultaneous detection of GBS and macrolide and lincosamide resistance markers was developed. The usefulness of the assay was evaluated for rapid and accurate prenatal GBS screening.MethodsOne hundred two pregnant women who were at 35–37 weeks of gestation were enrolled in this study. The analytical performance of the multiplex real-time PCR was first tested using a panel of reference and clinical bacterial and fungal strains. To test the clinical performance, vaginal-rectal swabs were obtained from pregnant women who were seen at the teaching hospital for regular prenatal care. The results of real-time were compared with those obtained from microbiological analyses.ResultsThe real-time PCR assay showed 100% specificity and a limit of detection of 104 colony forming units equivalent per reaction. The prevalence of GBS colonization among the population studied was 15.7% (16/102) based on a positive culture and the real-time PCR results. Agreement between the two assays was found for 11 (68.75%) GBS colonized women. Using the culture-based results as a reference, the multiplex real-time PCR had a sensitivity of 91.7% (11/12, CI 59.7–99.6%), a specificity of 95.5% (86/90, CI 89.8–98.7%), a positive predictive value of 73.3% (11/15, CI 44.8–91.1%) and a negative predictive value of 98.9% (86/87, CI 92.9–99.9%).ConclusionThe multiplex real-time PCR is a rapid, affordable and sensitive assay for direct detection of GBS in vaginal-rectal swabs.

Highlights

  • Streptococcus agalactiae or Group B Streptococcus (GBS) remains the leading cause of infections in newborns worldwilde

  • 1 (IGS1) of ribosomal RNA gene cluster of the Cryptococcus gattii [32], an encapsulated yeast found in the environment, were included in this study to evaluate the quality of the DNA and potential polymerase chain reaction (PCR) interfering substances, respectively

  • The results presented here showed that the multiplex real-time PCR is a rapid, affordable and sensitive assay suitable for direct detection of GBS in vaginal-rectal swab

Read more

Summary

Introduction

Streptococcus agalactiae or Group B Streptococcus (GBS) remains the leading cause of infections in newborns worldwilde. Prenatal GBS screening of pregnant women for vaginal-rectal colonization is recommended in many countries to manage appropriate intrapartum antimicrobial prophylaxis for those identified as carriers. Streptococcus agalactiae or Group B Streptococcus (GBS) is a leading cause of infections in newborns worldwide [1, 2]. The risk of maternal GBS transmission to the newborn and development of infection persists. The prevention strategy based on bacterium screening and intrapartum antimicrobial prophylaxis (IAP) in those pregnant women identified as carriers has led to a substantial reduction in the incidence of neonatal GBS diseases in various regions of the world [10]. Resistance encoded by mef genes (phenotype M) confers resistance only to 14- and 15-membered ring macrolides (erythromycin and azithromycin) [19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.