Abstract

We have installed a new experimental apparatus to measure γ-rays from highly excited states populated by the multi-nucleon transfer reactions with heavy-ion projectiles to determine the (n, γ) cross-sections by means of the surrogate reaction method. An apparatus consists of two anti-Compton LaBr3(Ce) spectrometers to measure the γ-rays and a Si ΔE–E detector system to detect outgoing projectile-like particles. Reactions of 153-MeV 18O beams with 155Gd and 157Gd targets were used to study the performance of apparatus. By using the LaBr3(Ce) scintillators with relatively large volume (101.6mm in diameter and 127mm in length), we have successfully measured γ-rays from the compound nuclei, which have excitation energy above neutron separation energy, populated by 155Gd(18O, 16O)157Gd and 157Gd(18O, 16O)159Gd two-neutron transfer reactions. To measure in-beam γ-rays through heavy-ion-induced transfer reaction, it is important to assign the reaction channel clearly, since the cross-sections of the transfer reactions are much smaller than those of competing reactions such as Coulomb excitation and fusion reactions. The Si ΔE–E detector system was used to separate outgoing particles. The present study has demonstrated high capability of apparatus to measure the de-excitation γ-rays in the compound nuclei produced by the multi-nucleon transfer reactions for determination of the (n, γ) cross-sections by using the surrogate reaction method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call