Abstract

An MCNP–ORIGEN burn-up calculation code system, named MCORE (MCNP and ORIGEN burn-up Evaluation code), is developed in this work. MCORE makes use of the Monte Carlo neutron and photon transport code MCNP4C and nuclides depletion and decay calculation code ORIGEN2.1. MCNP and ORIGEN are coupled by data processing and linking subroutines. In MCORE, a so called “modified predictor corrector” approach is used. MCORE provides the capability of using different depletion calculation schemes and simulating fuel shuffling. Total nuclide density changes in active cells are considered in MCORE. The validity and applicability of the developed code are tested by investigating and predicting the neutronic and isotopic behavior of a “VVER-1000 LEU Assembly Computational Benchmark” at lattice level and a “Physics of Plutonium Recycling” fast reactor at core level (OECD-NEA).The comparison results show that the MCORE code predicts the nuclide composition within 5% accuracy and k∞ within 800pcm at the end of the burn-up for LEU assembly (40MWD/kg HM). For a fast reactor, the results obtained by MCORE are in the range of reported results except for 243Am. In general, MCORE results show a good agreement with the benchmark values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.