Abstract

The main element of metalworking, engineering and other industries is heating and heat-treating furnaces. An array of workpieces that are loaded into the furnace includes bulk tanks with different parameters. The existing designs of heating furnaces have a number of disadvantages, one of which is the lack of heat carrier filtration in the vertical direction. However, this feature can be found in the developed design of the batch furnace with sole flues. The aim of the work is to develop and study the parameters of a mathematical model of the heating process of a bulk tank in a heat-treating furnace with sole flues. The paper describes and studies a mathematical model of a heat-treating furnace equipped with special sole flues. The bulk tank model is built based on a fractal structure, in particular the Menger sponge. To solve the problem of deter-mining the temperature field of the bulk tank, we used a numerical calculation of heat exchange based on the finite-difference method, also called the grid method. For this purpose, a new design of the batch furnace with hearth chambers has been proposed. As a result of mathematical modeling of the heating process, we have obtained a graph reflecting the temperature field of the bulk tank on the surface and in the heating center. We have also compared the temperature regime of bulk tank heating under normal conditions and in conditions of additional heat carrier filtration through the flues from the hearth chambers to the furnace hearth. The reliability of the results is confirmed by comparing the numerical simulation results and the results of the physical experiment. The error is not more than 10 %. The efficiency of the heat-treating furnace is improved by additional heat carrier filtration through special channels in the furnace sole. The obtained mathematical model can be used to calculate different heating modes in heat-treating furnaces and to develop technological maps of heating bulk tanks with different porosity values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.