Abstract
A mathematical model for predicting the permeability of natural gas in polymer nanocomposites was developed and tested using experimental data. The model takes into account the effects of pressure, temperature, crystallinity and nanoparticle loading. Three model parameters (, and) were obtained. The parameter is a measure of the activation energy, described the effect of nanocomposite loading, and can be used to describe the effect of gas concentration on the. Polymer nanocomposites were prepared using high density polyethylene as polymer matrix and Cloisite 15A as nanoclay. The proposed model was used to predict the permeability of the nanocomposites to pure CH4 and mixed CH4/CO2 gases (containing 80 mol% CH4) at pressures up to about 106 bar and temperatures between 30 to 70°C. Predicted results show that the developed model provides an excellent description of natural gas permeation in pure HDPE and its nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.