Abstract
Flexure-hinge mechanisms are commonly used in the design of translational micro/nanopositioning stages. They can offer a drive system with negligible friction and no need for lubrication. Usually, a large motion range requires the use of a very long actuator which could interfere with a tight workplace. A lever which amplifies the input motion of a short actuator is an effective technique to solve the problem. This paper presents the methodology for the design of a lever-type magnified flexure mechanism used for the ultra precision fast tool servo (FTS) system. A lever type hinge mechanism is designed and utilized to guide the tool holder and to preload the PZT actuator. A low capacitance PZT actuator is adopted to match the given amplifier to achieve optimum performance of device displacement. A high resolution capacitive sensor is utilized to measure the natural displacement of the tool holder. An amplifier with a multiplying factor of 12 is utilized to magnify the drive signal for the expansion and retraction of the PZT actuator. Meanwhile, the motion range of the FTS system can reach up to 98.12 μm with a primary resonant frequency of about 460 Hz, and the amplification of the lever flexure mechanism is approximately 5 as calculated from the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.