Abstract

Several methods have been developed to prevent lateral hinge fractures (LHFs), using only classic statistical models. Machine learning is under the spotlight because of its ability to analyze various weights and model nonlinear relationships. The purpose of this study was to create a machine learning model that predicts LHF with high predictive performance. Data were collected from a total of 439 knees with medial osteoarthritis (OA) treated with Medial open wedge high tibial osteotomy (MOW-HTO) from March 2014 to February 2020. The patient data included age, sex, height, and weight. Preoperative, determined, and modifiable factors were categorized using X-ray and CT data to create ensemble models with better predictive performance. Among the 57 ensemble models, which is the total number of possible combinations with six models, the model with the highest area under curve (AUC) or F1-score was selected as the final ensemble model. Gain feature importance analysis and the Shapley additive explanations (SHAP) feature explanation were performed on the best models. The ensemble model with the highest AUC was a combination of a light gradient boosting machine (LGBM) and multilayer perceptron (MLP) (AUC = 0.992). The ensemble model with the highest F1-score was the model that combined logistic regression (LR) and MLP (F1-score = 0.765). Distance X was the most predictive feature in the results of both model interpretation analyses. Two types of ensemble models, LGBM with MLP and LR with MLP, were developed as machine learning models to predict LHF with high predictive performance. Using these models, surgeons can identify important features to prevent LHF and establish strategies by adjusting modifiable factors. Retrospective cohort study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call