Abstract

Cervical spine fractures represent a significant healthcare challenge, necessitating accurate detection for appropriate management and improved patient outcomes. This study aims to develop a machine learning-based model utilizing a computed tomography (CT) image dataset to detect and classify cervical spine fractures. Leveraging a large dataset of 4,050 CT images obtained from the Radiological Society of North America (RSNA) Cervical Spine Fracture dataset, we evaluatethe potential of machine learning and deep learning algorithms in achieving accurate and reliable cervical spine fracture detection. The model demonstrates outstanding performance, achieving an average precision of 1 and 100% precision, recall, sensitivity, specificity, and accuracy values. These exceptional results highlight the potential of machine learning algorithms to enhance clinical decision-making and facilitate prompt treatment initiation for cervical spine fractures. However, further research and validation efforts are warranted to assess the model's generalizability across diverse populations and real-world clinical settings, ultimately contributing to improved patient outcomes in cervical spine fracture cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.