Abstract

IntroductionDemand for total shoulder arthroplasty (TSA) has risen significantly and is projected to continue growing. From 2012 to 2017, the incidence of reverse total shoulder arthroplasty (rTSA) rose from 7.3 cases per 100,000 to 19.3 per 100,000. Anatomical TSA saw a growth from 9.5 cases per 100,000 to 12.5 per 100,000. Failure to identify implants in a timely manner can increase operative time, cost and risk of complications. Several machine learning models have been developed to perform medical image analysis. However, they have not been widely applied in shoulder surgery. The authors developed a machine learning model to identify shoulder implant manufacturers and type from anterior-posterior X-ray images. MethodsThe model deployed was a convolutional neural network (CNN), which has been widely used in computer vision tasks. 696 radiographs were obtained from a single institution. 70% were used to train the model, while evaluation was done on 30%. ResultsOn the evaluation set, the model performed with an overall accuracy of 93.9% with positive predictive value, sensitivity and F-1 scores of 94% across 10 different implant types (4 reverse, 6 anatomical). Average identification time was 0.110 s per implant. ConclusionThis proof of concept study demonstrates that machine learning can assist with preoperative planning and improve cost-efficiency in shoulder surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.