Abstract

The toxin-producing bacterium Vibrio cholerae can cause severe diarrhea and has caused seven global pandemics. Traditional viable cell counts and phage plaques are commonly used to evaluate the efficacy of virulent phage clearance of V. cholerae, but these operations are time-consuming and labor-intensive, and difficult to provide real-time changes. It is desirable to develop a simple and real-time method to monitor V. cholerae during phage lysis. In this study, a luminescence-generating plasmid pBBR-pmdh-luxCDABE was transformed into three O1 serogroup drug-resistant strains of V. cholerae. The results showed that the luminescence value as a monitoring index correlates well with the traditional viable cell count method. Monitoring the number of live cells of V. cholerae by measuring the luminescence allowed real-time analysis of the number of bacteria remaining during phage lysis. This method enables repeated, interference-free, continuous multiple-time-point detection of the same sample without the time delay of re-culture or plaque formation, facilitating real-time monitoring and analysis of the interaction between the phage and the host bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call