Abstract

This paper presents the design of 19 inch rack acoustical doors balancing acoustical attenuation, airflow impedance and distribution in a short depth by combining air foil technology with acoustic baffle design. Design optimization was done utilizing fluid flow analytical modeling and verified with a air flow bench and an acoustical rack door test fixture. Higher heat loads in rack mounted computer equipment drive higher cooling requirements. In order to provide air cooling solutions, higher volumetric air flow is required resulting in higher acoustical noise levels. These noise levels can result in noise levels that are unacceptable to the customer. Acoustical doors lower noise levels but are prone to high flow impedance, uneven flow distribution and large physical depth. High impedances require higher air moving device speeds to offset the lost volumetric air flow. This decreases the effective acoustical attenuation. Various rack modules have different inlet and outlet air flow locations making the distribution of the air from the door (front) or into the door(rear) important. Solutions to these problems usually require large depths in order to provide blockage of line of site and gradual air flow lines to keep impedance low and provide even distribution of the air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call